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SUMMARY 

Swelling has long been used in the study of elastomeric networks. 
In the case of stress-strain measurements on swollen networks 9 the most 
important observation was the decrease of the Mooney constant 2C2, which 
is widely used to represent the magnitude of the departure of an observed 
stress-strain isotherm from that predicted by the simplest molecular 
theories. Swelling equilibrium data were generally analysed by the 
Flory-Rehner equation for affine networks simply to obtain a measure of 
the degree of cross-linking. The advent of model networks whose 
structures are well known and of a new theory due to Flory constitute 
great improvements for the study of rubberlike elasticity. In this new 
context, swelling can be used to obtain additional important molecular 
information through both uniaxial extension of swollen samples and 
swelling equilibrium. In particular, the relation between the main 
parameter K characterizing the local constraints on junction fluctuations 
in the Flory theory, the extent of swelling, and the molecular weight 
between cross-links can be probed. 

INTRODUCTION 

A molecular understanding of the behavior exhibited by rubberlike 
materials under deformation is still being widely investigated (1)9 in 
spite of great improvements achieved during recent years. One advance is 
the use of model networks for accurate information on the chemical 
structure of the samples (molecular weight between crosslinks and 
functionality of junctions) (2). Moreover, a new molecular theory due to 
Flory (3) seems to account well for a variety of results (4). Among 
these, uniaxial extension of elastomers swollen by organic solvents and 
isotropic swelling equilibrium can provide much useful information. Our 
aim is to review these methods and emphasize how they can be used to 
determine the main parameter K which measures the severity of 
restrictions on junction fluctuations in a real network in the latest 
refinement of the Flory theory. 

UNIAXIAL EXTENSION 

Phantom Networks. In such networks 9 the junctions fluctuate around 
their mean positions and thus the instantaneous distribution of chain 
vectors r is not affine with the macroscopic strain. The elastic free 
energy is given by (5) 
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AAel(Ph) = (i/2)~kT(l I - 3) (i) 

where I I is the first invariant of the tensor of deformation, and k the 
Boltzmann constant. The cycle rank ~ (number of independent circuits of 
the network) is the difference between the number of effective chains 
and junctions B (6), 

= ~) - ~ (2) 

We consider here only perfect end-linked networks obtained by 
crosslinking end-reactive chains of number average molecular weight M 
with molecules of functionality ~ > 2. Thus the molecular weight betwee~ 
crosslinks M is equal to M and the functionality of the junctions is ~. 
Hence the fo~lowing relation~ can be obtained: 

~/Vo = (i - 2/~)O/M n 

~/~ = (r - l) -I 

(3) 

(4) 

where P is the density of the network and Vo is its volume in the 
reference state. The quantity ~/Vo is then the cycle rank density. 

Networks Deforming Affinely. In this limit, the fluctuations of 
junctions are completely suppressed and the instantaneous distribution of 
chain vectors is then affine with the strain. The elastic free energy is 
(6) 

AAel(aff) = (1/2)(1 - 2/~)-l~kT(ll - 3) - (2/~)(i - 2/~)-l~kT (5) 

s 

where V is the actual volume. 

Real Networks. The elastomeric behavior exhibited by real networks 
is between the phantom and affine limits. Ronca and Allegra (7) and 
Flory (3) have independently proposed a model in which the restrictions 
on fluctuations of junctions due to neighboring chains are represented by 
domains of constraints. At small deformations, the stress is thus 
enhanced relative to that exhibited by the corresponding phantom network. 
In the limit at large strains, the effects of the restrictions vanish and 
the relationship of stress to strain converges to that for a phantom 
network. 

The elastic~ free energy is then the sum of the phantom free energy 
f 

|Equation (i~ and of an additional term which accounts for the 
constraints, 
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AAel : AAel(Ph) + AA c (6) 

This term AA r the complete expression for which can be found in 
reference (3) c ~quation (32~ , depends on two parameters. The most 
important one K measures the severity of the entanglement constraints 
relative to those imposed by the phantom network. For a phantom network 
= 0 r and for an affine one K = ~ Another parameter ~ takes into 
account the non-affine transformation of the domains of constraints with 
strain but has a minor role compared to K (4). 

Interpretation of Experimental Results. The transition from affine 
to phantom behavior with increase in elongation would cause a decrease in 
the elastic modulus defined by 

~ = fvl~3/Ad( ~ - ~-2) (7) 

where f is the measured force r v 2 the volume fraction of polymer in the 
swollen network r ~ the extension ~atio relative to the undeformed swollen 
state r and A d the cross-sectional area of the isotropic unswollen sample. 
Such decreases have long been observed (8) and have generally been 
represented by the Mooney-Rivlin equation 

f*] : 2C I + 2C2 ~-I (8) 

where 2C~ decreases markedly with swelling (8). Specifically r for a 
phantom network 

If*] = (~/Vo)RT (9) 

where R is the gas constant. 

To determine the parameter ~, [f~ is fitted to 

[f*]Flory = (~/Vo)RT{(I + (~/~)((~K(C~2v2-2/3) - ~-2K((~-iv2-2/3)) } ( io)  

where the detailed expression for the function K is given in reference 
(3) [Equation (37)]. The curve fitting requires a value of the phantom 
modulus. One reasonable estimate would be the high deformation intercept 
in the Mooney-Rivlin plot for the network in the highly swollen state 
(4). But as the fragility of such materials may be a problem and the 
physical meaning of 2C I has not yet been clearly established r this 
extrapolation may be questionable. We prefer to use the phantom modulus 
calculated from the chemical constitution of the network [Equations (3) 
and (9)]. 

Another important point concerns the theoretical predictions of the 
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variation of ~ with oMn and v 2. A calculation of the degree of 
i n t e r p e n e t r a t i o n  of  chains  and j u n c t i o n s  leads  to (4) 

< = i<r2>o3/2(p/Vo)  ( l l )  

where I is a constant of proportionality. The right-hand side of 
equation (Ii) is simply proportional to the number of junctions in the 
volume pervaded by a chain. Then it can be shown that K depends on M to 

n 
the power 0.5 and should be independent of swelling since the dependence 
of <r2>o 3/2 on v is just counterbalanced by the v~ dependence of (~/Vo). 
This rests on th~ reasonable assumption that I is zndependent of both M 
and v 2. Experimentally, however, it seems that ~ varies with Mn to. th~ 
first power at least in the case of tetrafunctzonal 
poly(dimethylsiloxane) networks (9). 

Figure 1 presents values of the reduced force calculated from the 
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Figure i. Influence of K and v~ on the 
Flory reduced force for an end-linked 
mode~ network having M n = 8,000 g 
mol , ~ = 4, and ~ = 0. 

Flory ~heory for a perfect end-linked tetrafunctional ~etwork (M n = 8,000 
g mol-~). The accessible range of measurements is ~- = 0.5 to 0.99 and 
generally less for swollen samples. The sigmoidal curves are independent 
of swelling in this representation [see Equation (9)], and the decrease 
in the reduced force by swelling is mostly accounted by the presence of 
v? in the function K[Equation (I0)]. There may also, however, be a small 
v~riation of ~ with swelling. 
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SWELLING EQUILIBRIUM 

The free energy change AA for this process is usually assumed to be 
separable into the free energy of mixing AA and the elastic free energy 
AA m 

el' 

AA = AAm + AAel (12) 

although questions have been raised with regard to this separability 
(10) .  The c o n t r i b u t i o n  AA has been c a l c u l a t e d  by F lo ry  (11) us ing  a 

m 
lattice model~ AA . is given by Equations (i)~ (5) and (6) and depends on 

e~ 
the nature of the network. 

The chemical potential of the solvent in the swollen network is: 

o ~aAm 
UI - U1 = N ( ~ )  T,p 

l 

~AAel 8e 

+ N (---'~)r,p (~--~i) r,p 
(13) 

where N is Avogadro's number, n i the number of molecules of solvent, and 
the isotropic extension ratio e is: 

: ~ : e : [~_,(nlV I + Vo)/VoJ I/3 ~ : v-I/3-Z 
x y z 

(14) 

wher~ V I is the molar volume of the solvent. At swelling equilibrium ~I 
= ~i ; hence by using the standard expression of AA (ii), one can 
obtaln: m 

2 8AAel" 8a 
in (i - V2m ) + V2m + XlV2m = -N (~)T,p (~-'~l)T,p (15) 

The interaction parameter XiumaYsing be determined for example by vapor 
pressure measurements (12). the Flory expression for the elastic 
free energy [Equation (6)] and assuming < independent of swelling, 
EquatiQQ (15) (with the left-hand side abbreviated as H) becomes 

1/3 )K(v2~2/3)] H = -(~/Vo)VlV2m [i + (U/~ (16) 

The molecular weight M between crosslinks is then obtained by 
combination of Equations (3),c(4), and (16), 

Mcr = (2/$ - l)PVlV2~/3(l + (~/2 - l)-iK(v2m2/3))/H (17) 

where the subscript r is employed for real networks. 
deforming affinely, < = ~, K(~2) = i - ~-2 and 

For a network 
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~/3(i - 2 v 2/31~)/H Mca = - 0VlV2 2m T (18) 

The second term in the parenthesis comes from the term containing 
in(V/Vo) in Equation (5). For a phantom network < = 0, K(e 2) = 0, and 

= l)OVlV2~/3/H Mcp (2/~ - (19) 

Most of the experimental swelling results on crosslinked polymers 
have been interpreted using the Flory-Rehner expression for an affinely 
deforming network (14) instead of the general one Equation (17) . For 
perfect end-linked networks~ M = M and therefore the measurement of 

�9 . C , 

v. enables determznatzon of tC~e parameter < from Equatzon (17) by an 
�9 m . . . . .  
z~eratlve method. If < depends on dzlatlon9 however~ the derlvatzve of 
AAel with respect to ~ gives rise to an expression in which (SK/8~)T~v2 m 
is included. A more general equation can then be used in place of 
Equation (17). It is necessary then, of course~ to know the dependence 
of ~ on v 2 since 

8K ~ -4/3~ 8K 
= -=V2m ( )T v 

(~)Tgp'V2m ~v 2 'P' 2m 
(20) 

This dependence can be obtained by determination of ~ by stress-strain 

measurements at different degrees of swelling and extrapolation to v 2 = 
v~ . In this way K at v~ can also be reached and inserted into the 
zm zm . 

general swelling equilibrium equation for comparzson of Mcr and M n. 

DISCUSSION 

The relation between <~ M and v 2 is represented in a three- 
dimensional coordinate system in ~igure 2. The curve C I is the evolution 
of ~ with M in the unswollen state and can be obtained by stress-strain 
measurements~ The experimental points (9) come from measurements (15) on 
tetrafunctional PDMS networks. The arbitrary curve C~ satisfies the 
decrease of < with swelling at constant Mn. The projectlon. C~ of C 3 on 
plane (M , <) (dashed curve) is lower than C I to satlsfy the increase of 
degree o~ swelling at equilibrium with increase in M . The dashed curve 

, . . . n 

P (15) zs the prolectzon on plane (i - v29 M ) of the path P. The 
surface defined by CI~ C^ and C~ can be p~0bed experimentally by 

�9 . - J .  

determlnatlon of K from s~ress-straln measurements at constant M and 
different degrees of swelling ("iso-M n lines"). Equation (i0) is nused 
for this purpose. 

A particularly useful swelling equilibrium study of PDMS would 
involve (inert) methyl-terminated DMS chains as diluent (16). In this 
case X~ = 0 and at constant M ~ v~ varies only with the molecular weight 

s . . . zm . . . .  

of the dzluent, enabllng estab~Ishment of Iso-M_ llnes. The iso-v, llnes 
are obtained by keeping the same diluent an~ changing the molecular 
weight between crosslinks. 

Thus swelling may provide a great deal of useful molecular 

information on rubber elasticity. 
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Figure 2 - Relations between K, M and 
(I - v2 ). n , The curves CI, C^, CA, C^ 

�9 . i z 
and P are explalned in the text. 
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